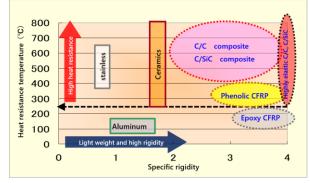


Heat Resistant Composite Materials Carbon/Carbon Composite, CMC Composite

Phenolic CFRP hand & Molding (long CF·short CF/development)



[Typical properties]

Materials	Direction	Bulk density	Bending strength (⊥)	Bending modulus (⊥)	Tensile strength	Compressive strength (⊥)
		g/cm ³	MPa	GPa	MPa	MPa
C/C	lsotropic	1.9	180	70	110	170
	Unidirectional	1.7	440	290	300	300
C/SiC	lsotropic	2.4	150	100	100	500
	Unidirectional	2.1	410	310	300	450
Phenolic	lsotropic	1.6	100	20	50	170
CFRP	Unidirectional	1.7	630	390	1,710	300

The listed values are typical and can vary depending on the laminated structure and the amounts of substances contained.

【Comparison with other materials】

Mitsubishi Chemical Corporation

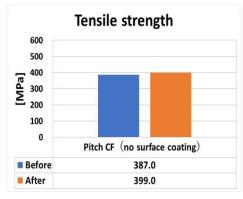
Composite Products Department

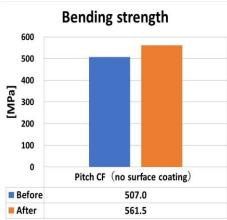
1-1, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-8251, Japan

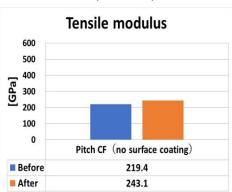
- The information and data contained in this brochure are as of April 2023.
- The content of this brochure may be changed without prior notice.

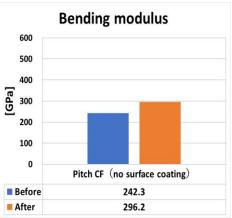
• Due to printing characteristics, the color tones may differ from the actual ones.

• The transcription of any dada or information contained in this brochure without prior written consent is strictly prohibited.

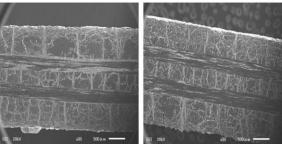



https://www.m-chemical.co.jp/carbon-fiber/en/




1500°C Heat Resistant CMC (Pitch-based C/SiC Composite)

Application: Heat-resistant material for spacecraft heat shield tiles Before vs after at 1,500°C×1 hour (in Air)



- No degradation of strength and modulus before and after heat treatment in air at 1,500°C for 1 hour,375MPa after exposure to 1500°C for 1 hour
- JAXA innovative future space transportation system target: 1600°C-800 seconds resistance

- The cross-sectional observation photographs (SEM images) before and after heat treatment are shown below (left: before, right: after). No major changes in appearance (deterioration) were observed.
- Plan to perform \sim 2000°C heating test in future

Mitsubishi Chemical Corporation

Composite Products Department 1-1, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-8251, Japan

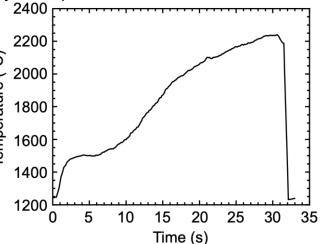
- The information and data contained in this brochure are as of April 2023.
- The content of this brochure may be changed without prior notice.
- Due to printing characteristics, the color tones may differ from the actual ones.

• The transcription of any dada or information contained in this brochure without prior written consent is strictly prohibited.

https://www.m-chemical.co.jp/carbon-fiber/en/

2200°C Heat Resistant Pitch-based C/C Composite

Application: Heat-resistant material for rocket nozzles and satellite attitude control thruster nozzles


JAXA arc heating wind tunnel test facility

JAXA/ISAS

Heating condition

Heating rate: 4.83 MW/m2 Dynamic pressure: 13~14 kPa 2400 2200 Temperature (°C) 2000 1800 1600

Thickness reduction rate: 10%

Cross section after heating test

Surface during heating at 2200°C

Courtesy of Tokyo University of Science

- Joint development of CMC heat-resistant materials is underway with Tokyo University of Science.
- As a result of arc heating wind tunnel testing of the base material, the amount of wear was approximately 10% (0.8mm) for pitch-based C/C composite with a thickness of 8mm, .Plans for impregnating with alloys such as Zr-Ti to improve the heat resistance performance.

Mitsubishi Chemical Corporation

Composite Products Department 1-1, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-8251, Japan

- The information and data contained in this brochure are as of April 2023.
- The content of this brochure may be changed without prior notice.

Due to printing characteristics, the color tones may differ from the actual ones.

The transcription of any dada or information contained in this brochure without prior written consent is strictly prohibited.

https://www.m-chemical.co.jp/carbon-fiber/en/